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Linear Bandits



Linear Bandit Model

o At each time t € {1,2,---,T}:
e The learner chooses an action A; € A C R4
e Receives reward:
Y—t = A;FM + Zt7

where ;1 € R? is an unknown parameter, and Z, is

o2-sub-Gaussian noise.
o Goal: maximize cumulative reward (or minimize regret):

T T
T
Ri(n) =Y a* p—ED>_ Aly
t=1

t=1

where a* = arg maxq,e4 a' j.
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Action Set and Regret
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Linear Bandits

Lower bounds



Locally Asymptotic Minimax Lower Bound

Consider, A = {a € R¥*! : ||la|]jss < 1} and B > 0.

Theorem (5.1, page 152)

For any algorithm ©, any T > 1 and any p € R ||ul|p—1 = B,
there exists pi/ € R ||y ||pr—1 = B such that :

i = 13 < min(odB/VT, 4B,

and :

dvT BT
™ I> . g - .
Ry o (20, 1)

Previous lower bounds only showed :

d
v, 3 € B0, —— ), RE (1) = codVT .
™, 3u € B( 4\/3—T) 7(n) 2 co
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Lower Bound
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Linear Bandits

Algorithms



Optimistic Linear Bandit Algorithms

e At each time t € {1,2,--- , T} :

o The learner chooses an action A; € A

A, = arg max a6
acA
0e€Ci_1

e Where C;_; is a confidence set for p at time ¢t — 1.
]P’(Vt,u S Ct—l) >1-6
e C;_1 is an ellipsoid! centered at the OLS or Ridge estimator i;_1.

Ci = {0 € R, || it — Olv, < Be(9)}

lAbbasi—yadkori, Yasin, D4vid P4l, and Csaba Szepesvéri. Improved Algorithms for
Linear Stochastic Bandits
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Concentration and LinUCB
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NP-Hardness

In general, this bilinear optimization problem is N'P-hard to
approximate.

Proposition (6.5, page 179)
Forp > 2, when A= {a € R?: |a|, <1}, and W is a positive
definite matrix, the problem :

max a6,
acA
lollw <1

is N'P-hard to approzimate below an approzimation ratio £, > 0.

By a reduction from an operator norm computation problem?.

2Bhattiprolu, Vijay, Mrinal Kanti Ghosh, Venkatesan Guruswami, Euiwoong Lee,
and Madhur Tulsiani. Inapproximability of Matrix p — ¢ Norms
9/47



A finite

We have :

max a6 (Pp)
llallar<1
l0—cllw<1

By maximizing over # first, we have :

.
L P
maxa: ¢+ [|aflw-1 (Pa)

This is a convex function !..Maximizing over a convex set.
If A is finite and not too big one can do an exhaustive search.
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When A is an ellipsoid

We have :

max a'f (Pg)
llallar<1
6—cllw <1

By a change of variable and maximizing over a first, we have :

max Py
1 9ll2 (Pg)

Where b = UM ~/2¢ and UAUT = MzWM?z. A is diagonal.

This is a convex function !..Maximizing over a convex set.
There can be 2% local maxima.
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Commercial Solver

We recall our 3 equivalent problems :

max a6 (Pgp)
llallar<1
|6—cllw<1
T
max a ¢+ |la|ly-1. /2
max a"e ol (Pa)
max Py
||¢_b”A<1||<25||2 (Pg)

Giving those problems to commercial solver like Gurobi does not work
in practise. (see fig 5.4.4 page 162). There may be exponentially
many local maxima.
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How to solve (P})

o Write the KKT conditions of (Pf;), and examine all possible
cases.

e Discard some pathological cases.

o Use the symmetry of the ellipsoid parametrized by A and b. To
find the best solution among the 2¢ candidates.

Theorem (6.6, page 180)

-~

MazNorm outputs (a,d) an e-optimal solution to Pg, in the sense that
a'0>al 0o —c in time :

. O (@ + dog, (LAY |
(& + 0, (£22))

Where f(A,b) is a nice function of the eigenvalues of A and b.

We can also efficiently solve P4 by a case disjunction and a change of
variable to make it convex. Then use an interior point method.
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Regret and Dimension
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Regret and Dimension
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Regret and Dimension
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Running Time and Dimension
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Running Time and Dimension
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Running Time and Dimension
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Optimistic Algorithms limitations

On Ellipsoids, existing optimistic algorithms have limitations :

e The confidence function §; depends on ||u||2 or an upper bound
on it.

o Need the knowledge of ||p|2.

e Regret upper bounds depend on ||u||2.

« Still a computation cost of d® at each round on Ellipsoids

e Not provably minimax optimal
Their regret is upper bounded by :

lim B <C
T.d—+o0 gdy/T In(T)

The minimax lower bound is :
Rr=Q (ad\/f)
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EETC Algorithm

Three phases Algorithm :

« (E) Find an estimator B of the norm ||| 37— such that with
high probability. :

allpliv-r < B < eallpllar—r-

o (E) Explore on the canonical basis for N, = d%B‘/rf

rounds.
Compute the OLS estimator fi.
.

e (C) Commit to the estimated best action a* (1) = ﬁ‘“—
Mllipr—1
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Phase 1 : Norm Adaptation

Time doubling strategy to estimate ||u|[ar-1 :
e Define time period of length
n; = 2°d
o Define confidence required after period i :
0; = min(dn; /T, 1)

o During period 4, play each (M’1/2ej)je[d] n;/d times.
e At the end of period i, compute the OLS estimator f; and check
if
Gillar-2 = 3U (65, 1)

e Stop if true, and output B= ||| a1
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ypical Run of EET

RE2TC(;,) o

Warmup Explore Commit
l
O(doV/T) !
1
""""""""""""""" : :
| l
O(doV/T) ; 1
| 1
I 1
I 1
""""""" 1 ! 1
; { i l
o2a 7= Tlul?,—
O(HﬂIIS—xln( ot )) [ | |
I I 1
| I 1
. . YT
&) O(doVT/||pallrr-+)
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E2TC Minimax Optimality

Corollary (5.7, page 158)

E2TC is locally asymptotically minimaz optimal: for any p € RY,

Ry (1) = O min (VT + dlllar+, Tllallar+) ) -

For minimax optimality, it was really important to set increasing

confidence §; during phase 1.

8; = min(dn;/T, 1) and n; = 2'd.
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Regret and Big Norm
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Figure 1: T =10000, c =1, M = 14, d = 3.
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Regret and Small Norm
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Figure 2: T'=10000, c =1, M = 14, d = 3.

26 /47



Regret and Dimension
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Figure 3: T'=10000, c =1, M = 14, d = 3.
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Regret and Dimension
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Figure 4: T =10000, c =1, M = 14, d = 3.
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Running Time and Dimension
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Running Time and Dimension
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Take away Messages

On Ellipsoids :

o We provided the first locally asymptotic minimax lower bound.

¢ We implemented optimistic algorithms.

e Our EETC algorithm is the first to be locally asymptotic minimax
optimal.

e EETC algorithm is simple and computationally efficient. It only
requires a logarithmic number of matrix inversions.

e We provided a novel norm estimation procedure that can be of
independent interest.
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Combinatorial Semi-Bandits
and Thompson Sampling




Combinatorial semi-bandits

o At time ¢ € [T,

e A learner selects decision A; € A C {0,1}%

o Gets reward V; = A/ X; and observes 4; ® Xy = (A, X¢ i) ie(q)
e (X}); ii.d. with mean p € R? and independent entries

o Goal: minimize regret

T
ZAth

Rr =Tmaxa' p—E
acA =

——

oracle

your algorithm

e Size m = max,e4 ||la||1, gap A, = (maxgeqa’p) —a' p .
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Thompson Sampling Algorithms

e Set a prior p, on p
o Observations up to time t, Hy—1 = (As © X, Ag)s<t,

T .
A, € arg gleaj(a 0 with 0 ~ pa,_,
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Exemples of Thompson Sampling

At round t :

A; € arg max a'o,
acA

o Example 1: (B-CTS) Bernoulli rewards and uniform priors, then

d
O ~ ®Beta (Ne—1,ifit—1 + 1, Ne—1i (1= frg—1,4) + 1)

7

o Example 2: (G-CTS) Gaussian rewards and gaussian priors, then

0y ~ N (fir—1,20°V,_1)

1 1
Vi, = dia s e
-1 e (Nt_l,l Nt_l,d>
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Combinatorial Semi-Bandits and Thompson
Sampling

Exponential regret of B-CTS



Exponential regret of B-CTS

Theorem (Zhang et al, 2021)

On some simple action set A, for Bernoulli reward B-CTS have an

exponential Tegret in the dimension d

e B-CTS is too greedy, and can get "stuck” for exponentially long
for time Tp(d)

o For d = 20, To(d) is greater than the age of the universe (!)

o High dimensional phenomenon, when d is large enough, the sum
of the posteriors is too concentrated around its mean.

Zhang and Combes, 2021, ”On the suboptimality of thompson sampling in high
dimensions”
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The example

o A= {a',a?} with action of size m = d/2
e a'=(1,..,1,0,...,0) and a® = (0, ...,0,1,..., 1)

* U= (Mlv ey M1 2, "'7:‘1’2) with H1 = o > 0.5

Main idea : what if you start the algorithm knowing ps perfectly ?
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The example

The typical posterior evolution :

0.5
=== lrwinhall m = 30
— b=038

0.4 =1
—_—t=2

03] — t=3
—_—t=4

0.2 t=5

0.1

0.0

m/2 mb

When need to make sure that the optimal action is played enough !
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First Optimal play Cumulative Distribution Function
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(a) m=6 (b) m=14

The optimal action can be not played enough for a long time when m
is large.
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Combinatorial Semi-Bandits and Thompson
Sampling

The BG-CTS Algorithm



BG-CTS algorithm

o Sampling algorithm

A; € argmaxa' 0, with 6, ~ N (fis—1,20%9:Vi_1)

1 1
Vi—1 = dia s
=t 2 (Nt—Ll Nt—1,d>

o Exploration boost

Int+ (m+2)Inlnt+ (m/2)In(1 +e/N)
Int

g(t) = (1+3)

o Similar to G-CTS for Gaussian rewards with a well chosen boost

¢ Implementable by linear programming over A

Zhang and Combes, 2024, "Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox”
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Regret and complexity of BG-CTS

Theorem (4.1, Page 125)

Consider 1-subgaussian rewards. The regret of BG-CTS verifies

Ry < C(dlnm)InT + d®mInnT) /Apin + P(m, d, 1/Amin) ,
with C' a universal constant and P a polynomial.

e Valid for Gaussian, Bernoulli, bounded etc.

e If linear programming over A is polynomial then polynomial
complexity.

e Best known polynomial (complexity, regret) algorithm for
asymptotic regret for general action set.
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Rationale: self normalized concentration inequalities

e Why is the "correct” confidence boost g; 7

¢ Self-normalized concentration inequality, choose g; such that

|a* " (s — ) 1
P — = > /2In(t € ——
(ii{? \ /a*T‘/sa* - Il( )gt t(lnt)2

e The proof relies on showing that with high probability :
t
Z 1{a*"0, > a*"pu} > |ct*]
S

with a constants o > 0 and ¢ > 0 for all ¢ € [T7].

This ensures enough exploration of the optimal action !

Degenne and Perchet, 2016, "Combinatorial semi-bandit with known covariance”
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Mismatched sampling paradox

Consider a problem with Bernoulli rewards and parameters in [0, 1)%.

« Learner 1 knows the rewards distribution and the support [0, 1]%,
uses a uniform (or Jeffreys) prior over [0,1]¢ and Bernoulli
likelihood (B-CTS)

o Learner 2 does not know the rewards distribution and the
support [0,1]%, uses a Gaussian prior and Gaussian likelihood
over R? and a boost (BG-CTS)

Paradox: Learner 1 performs exponentially worse than Learner 2
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Regret experiments of BG-CTS vs B-CTS

B-CTS-Jeffreys
B-CTS-Uniform
—— ESCB
—— BG-CTS

O 2500 5000 700

10000 12500 15000 17500 20000 0 10 20 30 10 50 60
t Number of arms

(a) Average regret over time (b) Final regret as a function of m
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Take away messages

e Sampling algorithms are fine, but posterior sampling sometimes
does not work.

o Putting mass outside the parameter space can make things
exponentially better !

o This Bayesian rationale of predicting using the posterior
distribution is not universal for online problems.

e One may need to put prior on the reward of the action and not
on fi.
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Conclusion

e How to generalize EETC, LinUCB implementation to more
complex action set 7

e Have a version of those algorithms for generalize linear bandits 7

o What is the relation between the regret of Thompson Sampling
and the hardness of optimistic algorithms 7
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Publications

e Zhang and Combes, "On the Suboptimality of Thompson
Sampling in High Dimensions” (NeurIPS 2021)

e Zhang and Combes, "Thompson Sampling for Combinatorial
Bandits: Polynomial Regret and Mismatched Sampling Paradox”
(NeurIPS 2024)

e Zhang, Hadiji and Combes, "Linear Bandits on Ellipsoids:
Minimax Optimal Algorithms” (COLT 2025)

e Zhang, Hadiji and Combes, "Tractable Instances of Bilinear
Maximization: Implementing LinUCB on Ellipsoids” (Under

review)
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Thank you for your attention !

p— —
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