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Linear Bandits



Linear Bandit Model

• At each time t ∈ {1, 2, · · · , T} :
• The learner chooses an action At ∈ A ⊂ Rd

• Receives reward:
Yt = A>

t µ + Zt,

where µ ∈ Rd is an unknown parameter, and Zt is
σ2-sub-Gaussian noise.

• Goal: maximize cumulative reward (or minimize regret):

Rπ
T (µ) =

T∑
t=1

a?>µ − E[
T∑

t=1
A>

t µ]

where a? = arg maxa∈A a>µ.
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Action Set and Regret
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Linear Bandits

Lower bounds



Locally Asymptotic Minimax Lower Bound

Consider, A = {a ∈ Rd+1 : ‖a‖M 6 1} and B > 0.

Theorem (5.1, page 152)
For any algorithm π, any T > 1 and any µ ∈ Rd+1, ‖µ‖M−1 = B,
there exists µ′ ∈ Rd+1, ‖µ′‖M−1 = B such that :

‖µ − µ′‖2
M−1 ≤ min(σdB/

√
T , 4B2),

and :

Rπ
T (µ′) ≥ min

(
σd

√
T

16 ,
BT

4

)
.

Previous lower bounds only showed :

∀π, ∃µ ∈ B(0,
d

4
√

3T
), Rπ

T (µ) > cσd
√

T .
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Lower Bound
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Linear Bandits

Algorithms



Optimistic Linear Bandit Algorithms

• At each time t ∈ {1, 2, · · · , T} :
• The learner chooses an action At ∈ A

At = arg max
a∈A

θ∈Ct−1

a>θ

• Where Ct−1 is a confidence set for µ at time t − 1.

P(∀t, µ ∈ Ct−1) > 1 − δ

• Ct−1 is an ellipsoid1 centered at the OLS or Ridge estimator µ̂t−1.

Ct := {θ ∈ Rd, ‖µ̂t − θ‖Vt
6 βt(δ)}

1Abbasi-yadkori, Yasin, Dávid Pál, and Csaba Szepesvári. Improved Algorithms for
Linear Stochastic Bandits
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Concentration and LinUCB
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N P-Hardness

In general, this bilinear optimization problem is N P-hard to
approximate.

Proposition (6.5, page 179)
For p > 2, when A = {a ∈ Rd : ‖a‖p 6 1}, and W is a positive
definite matrix, the problem :

max
a∈A

‖θ‖W 61

a>θ ,

is N P-hard to approximate below an approximation ratio εp > 0.

By a reduction from an operator norm computation problem2.

2Bhattiprolu, Vijay, Mrinal Kanti Ghosh, Venkatesan Guruswami, Euiwoong Lee,
and Madhur Tulsiani. Inapproximability of Matrix p → q Norms
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A finite

We have :
max

‖a‖M61
‖θ−c‖W 61

a>θ (PB)

By maximizing over θ first, we have :

max
a∈A

a>c + ‖a‖W −1 . (PA)

This is a convex function !…Maximizing over a convex set.
If A is finite and not too big one can do an exhaustive search.
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When A is an ellipsoid

We have :
max

‖a‖M61
‖θ−c‖W 61

a>θ (PB)

By a change of variable and maximizing over a first, we have :

max
‖φ−b‖Λ61

‖φ‖2 (P ′′
B)

Where b = UM−1/2c and UΛUT = M
1
2 WM

1
2 . Λ is diagonal.

This is a convex function !…Maximizing over a convex set.
There can be 2d local maxima.
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Commercial Solver

We recall our 3 equivalent problems :

max
‖a‖M61

‖θ−c‖W 61

a>θ (PB)

max
‖a‖M61

a>c + ‖a‖W −1 . (PA)

max
‖φ−b‖Λ61

‖φ‖2 (P ′′
B)

Giving those problems to commercial solver like Gurobi does not work
in practise. (see fig 5.4.4 page 162). There may be exponentially
many local maxima.
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How to solve (P ′′
B)

• Write the KKT conditions of (P ′′
B), and examine all possible

cases.
• Discard some pathological cases.
• Use the symmetry of the ellipsoid parametrized by Λ and b. To

find the best solution among the 2d candidates.

Theorem (6.6, page 180)

MaxNorm outputs (â, θ̂) an ε-optimal solution to PB, in the sense that
â>θ̂ > a>

optθopt − ε in time :

O

(
d3 + d log2

(
f(Λ, b)

ε

))
.

Where f(Λ, b) is a nice function of the eigenvalues of Λ and b.

We can also efficiently solve PA by a case disjunction and a change of
variable to make it convex. Then use an interior point method.
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Regret and Dimension
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Regret and Dimension
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Running Time and Dimension
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Running Time and Dimension
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Optimistic Algorithms limitations

On Ellipsoids, existing optimistic algorithms have limitations :

• The confidence function βt depends on ‖µ‖2 or an upper bound
on it.

• Need the knowledge of ‖µ‖2.
• Regret upper bounds depend on ‖µ‖2.
• Still a computation cost of d3 at each round on Ellipsoids
• Not provably minimax optimal

Their regret is upper bounded by :

lim
T,d→+∞

RT

σd
√

T ln(T )
6 C .

The minimax lower bound is :

RT = Ω
(

σd
√

T
)
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EETC Algorithm

Three phases Algorithm :

• (E) Find an estimator B̂ of the norm ‖µ‖M−1 such that with
high probability. :

c1‖µ‖M−1 < B̂ < c2‖µ‖M−1 .

• (E) Explore on the canonical basis for Ne = dσ
√

T

B̂
rounds.

Compute the OLS estimator µ̂.
• (C) Commit to the estimated best action a?(µ̂) = M−1µ̂

‖µ̂‖M−1
.
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Phase 1 : Norm Adaptation

Time doubling strategy to estimate ‖µ‖M−1 :

• Define time period of length

ni = 2id

• Define confidence required after period i :

δi = min(dni/T, 1)

• During period i, play each (M−1/2ej)j∈[d] ni/d times.
• At the end of period i, compute the OLS estimator µ̂i and check

if :
‖µ̂i‖M−1 > 3U(δi, ni)

• Stop if true, and output B̂ = ‖µ̂i‖M−1 .
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Typical Run of EETC

Warmup Explore Commit

T

RE2TC
T (µ)

(1) O(dσ
√
T/‖µ‖M−1)

O

(
σ2d2

‖µ‖M−1
ln

(
T‖µ‖2

M−1

d2σ2

))
O(dσ

√
T )

O(dσ
√
T )
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E2TC Minimax Optimality

Corollary (5.7, page 158)
E2TC is locally asymptotically minimax optimal: for any µ ∈ Rd,

RT (µ) = O
(

min
(
σd

√
T + d‖µ‖M−1 , T‖µ‖M−1

))
.

For minimax optimality, it was really important to set increasing
confidence δi during phase 1.

δi = min(dni/T, 1) and ni = 2id .
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Regret and Big Norm
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Figure 1: T = 10000, σ = 1, M = Id, d = 3.
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Regret and Small Norm
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Figure 2: T = 10000, σ = 1, M = Id, d = 3.
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Regret and Dimension
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Figure 3: T = 10000, σ = 1, M = Id, d = 3.
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Regret and Dimension
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Figure 4: T = 10000, σ = 1, M = Id, d = 3.
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Running Time and Dimension
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Running Time and Dimension
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Take away Messages

On Ellipsoids :

• We provided the first locally asymptotic minimax lower bound.
• We implemented optimistic algorithms.
• Our EETC algorithm is the first to be locally asymptotic minimax

optimal.
• EETC algorithm is simple and computationally efficient. It only

requires a logarithmic number of matrix inversions.
• We provided a novel norm estimation procedure that can be of

independent interest.
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Combinatorial Semi-Bandits
and Thompson Sampling



Combinatorial semi-bandits

• At time t ∈ [T ],
• A learner selects decision At ∈ A ⊂ {0, 1}d

• Gets reward Yt = A>
t Xt and observes At � Xt = (At,iXt,i)i∈[d]

• (Xt)t i.i.d. with mean µ ∈ Rd and independent entries
• Goal: minimize regret

RT = T max
a∈A

a>µ︸ ︷︷ ︸
oracle

−E

[
T∑

t=1
A>

t Xt

]
︸ ︷︷ ︸

your algorithm

.

• Size m = maxa∈A ‖a‖1, gap ∆a = (maxa∈A a>µ) − a>µ .
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Thompson Sampling Algorithms

• Set a prior pµ on µ

• Observations up to time t, Ht−1 = (As � Xs, As)s<t,

At ∈ arg max
a∈A

a>θt with θt ∼ pµ|Ht−1
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Exemples of Thompson Sampling

At round t :
At ∈ arg max

a∈A
a>θt

• Example 1: (B-CTS) Bernoulli rewards and uniform priors, then

θt ∼
d⊗
i

Beta (Nt−1,iµ̂t−1,i + 1, Nt−1,i (1 − µ̂t−1,i) + 1)

• Example 2: (G-CTS) Gaussian rewards and gaussian priors, then

θt ∼ N (µ̂t−1, 2σ2Vt−1)

Vt−1 = diag
(

1
Nt−1,1

, ...,
1

Nt−1,d

)

34 / 47



Combinatorial Semi-Bandits and Thompson
Sampling

Exponential regret of B-CTS



Exponential regret of B-CTS

Theorem (Zhang et al, 2021)
On some simple action set A, for Bernoulli reward B-CTS have an
exponential regret in the dimension d

• B-CTS is too greedy, and can get ”stuck” for exponentially long
for time T0(d)

• For d = 20, T0(d) is greater than the age of the universe (!)
• High dimensional phenomenon, when d is large enough, the sum

of the posteriors is too concentrated around its mean.

Zhang and Combes, 2021, ”On the suboptimality of thompson sampling in high
dimensions”
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The example

• A =
{

a1, a2} with action of size m = d/2
• a1 = (1, ..., 1, 0, ..., 0) and a2 = (0, ..., 0, 1, ..., 1)
• µ = (µ1, ..., µ1, µ2, ..., µ2) with µ1 > µ2 > 0.5

Main idea : what if you start the algorithm knowing µ2 perfectly ?

30µ2

0.00

0.05

0.10

0.15

0.20

0.25 Irwinhall m = 30

µ2 = 0.8 known
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The example

The typical posterior evolution :

m/2 mb

0.0

0.1

0.2

0.3

0.4

0.5
Irwinhall m = 30

b = 0.8

t = 1

t = 2

t = 3

t = 4

t = 5

When need to make sure that the optimal action is played enough !
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First Optimal play Cumulative Distribution Function

(a) m = 6 (b) m = 14

The optimal action can be not played enough for a long time when m

is large.

38 / 47



Combinatorial Semi-Bandits and Thompson
Sampling

The BG-CTS Algorithm



BG-CTS algorithm

• Sampling algorithm

At ∈ arg max a>θt with θt ∼ N (µ̂t−1, 2σ2gtVt−1)

Vt−1 = diag
(

1
Nt−1,1

, ...,
1

Nt−1,d

)
• Exploration boost

g(t) = (1 + λ) ln t + (m + 2) ln ln t + (m/2) ln(1 + e/λ)
ln t

• Similar to G-CTS for Gaussian rewards with a well chosen boost
• Implementable by linear programming over A

Zhang and Combes, 2024, ”Thompson sampling for combinatorial bandits:
polynomial regret and mismatched sampling paradox”
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Regret and complexity of BG-CTS

Theorem (4.1, Page 125)
Consider 1-subgaussian rewards. The regret of BG-CTS verifies

RT ≤ C
(
d(ln m) ln T + d2m ln ln T

)
/∆min + P (m, d, 1/∆min) ,

with C a universal constant and P a polynomial.

• Valid for Gaussian, Bernoulli, bounded etc.
• If linear programming over A is polynomial then polynomial

complexity.
• Best known polynomial (complexity, regret) algorithm for

asymptotic regret for general action set.
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Rationale: self normalized concentration inequalities

• Why is the ”correct” confidence boost gt ?
• Self-normalized concentration inequality, choose gt such that

P

(
sup
s≤t

|a?>(µ̂s − µ)|√
a?>Vsa?

≥
√

2 ln(t)gt

)
6

1
t(ln t)2

• The proof relies on showing that with high probability :

t∑
s

1
{

a?>θs > a?>µ
}

> bctαc

with a constants α > 0 and c > 0 for all t ∈ [T ].

This ensures enough exploration of the optimal action !

Degenne and Perchet, 2016, ”Combinatorial semi-bandit with known covariance”
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Mismatched sampling paradox

Consider a problem with Bernoulli rewards and parameters in [0, 1]d.

• Learner 1 knows the rewards distribution and the support [0, 1]d,
uses a uniform (or Jeffreys) prior over [0, 1]d and Bernoulli
likelihood (B-CTS)

• Learner 2 does not know the rewards distribution and the
support [0, 1]d, uses a Gaussian prior and Gaussian likelihood
over Rd and a boost (BG-CTS)

Paradox: Learner 1 performs exponentially worse than Learner 2
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Regret experiments of BG-CTS vs B-CTS

(a) Average regret over time (b) Final regret as a function of m
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Take away messages

• Sampling algorithms are fine, but posterior sampling sometimes
does not work.

• Putting mass outside the parameter space can make things
exponentially better !

• This Bayesian rationale of predicting using the posterior
distribution is not universal for online problems.

• One may need to put prior on the reward of the action and not
on µ.
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Conclusion

• How to generalize EETC, LinUCB implementation to more
complex action set ?

• Have a version of those algorithms for generalize linear bandits ?
• What is the relation between the regret of Thompson Sampling

and the hardness of optimistic algorithms ?
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Publications

• Zhang and Combes, ”On the Suboptimality of Thompson
Sampling in High Dimensions” (NeurIPS 2021)

• Zhang and Combes, ”Thompson Sampling for Combinatorial
Bandits: Polynomial Regret and Mismatched Sampling Paradox”
(NeurIPS 2024)

• Zhang, Hadiji and Combes, ”Linear Bandits on Ellipsoids:
Minimax Optimal Algorithms” (COLT 2025)

• Zhang, Hadiji and Combes, ”Tractable Instances of Bilinear
Maximization: Implementing LinUCB on Ellipsoids” (Under
review)
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Thank you for your attention !

47 / 47


	Linear Bandits
	Lower bounds
	Algorithms

	Combinatorial Semi-Bandits and Thompson Sampling
	Exponential regret of B-CTS
	The BG-CTS Algorithm


